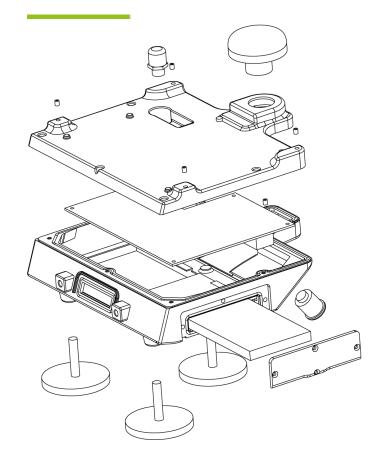
City Scanner Workshop

Workshop Agenda + Goals

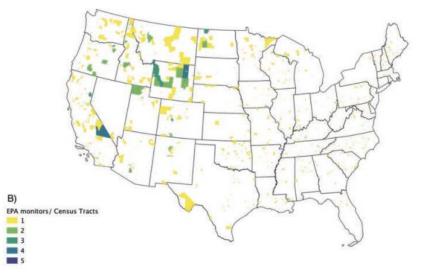
Agenda


- CityScanner Recap
- Historical + environmental use case context on The Bronx
- Analysis + Coding activities

Goals

- Understanding hyperlocal air quality sensing
- Perform time series + hotspot analysis
- Make maps with data

Can we turn urban vehicles into sensing platforms?


City Scanner

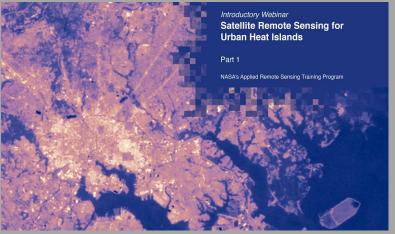


- Location
- Air quality (PM, CO, NOx)
- Temperature & Humidity
- Noise

Stationary vs. Mobile Sensors

EPA Monitors that report PM2.5 from 2015 to Feb 22 2020 per census tract in the US (deSouza and Kinney 2021)

Space coverage achieved with five city scanner sensors deployed in the Bronx for 3 months

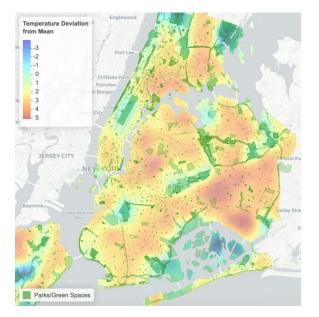

Environmental Sensing

Context + Background

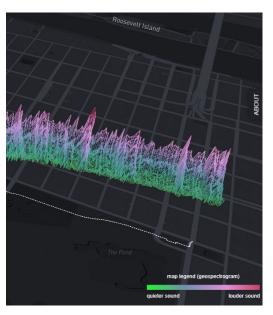

ENVIRONMENTAL SENSING 101

What information can we gather about our environment with different sensors?

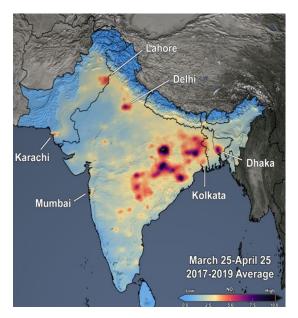
Heat, noise, air quality, temperature humidity, soil health, water pollutants, tree health, biodiversity, and more!



NASA ARSET



DiversiTree


Environmental Sensing: Heat, Noise, Air Quality

https://news.climate.columbia.edu/2021/08 /26/study-maps-urban-heat-islands-with-foc us-on-environmental-justice/

https://senseable.mit.edu/sonic-cities/

https://aura.gsfc.nasa.gov/airquality.html

Air Quality Sensing: Why?

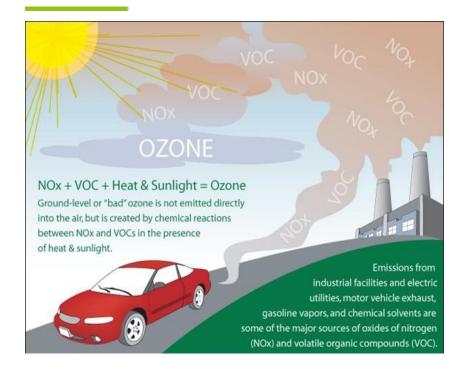
The Great Smog 1952 (https://www.britannica.com/event/Great-Smog-of-London)

Los Angeles Smog (https://www.britannica.com/science/smog#ref16459)

Air Quality Sensing: Why?

4.2 million per year vs. 6.2 million

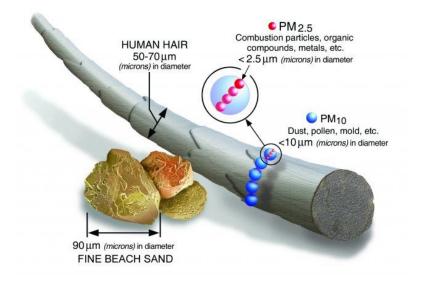
91% of world population lives in places exceeding WHO AQ Standards


Air Quality Index: Pollutants

Six criteria pollutants regulated by EPA

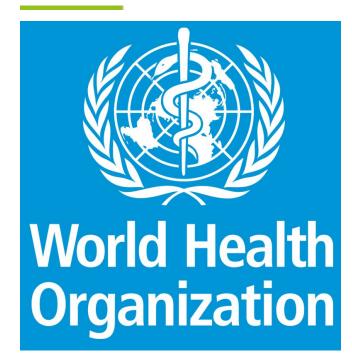
- Ground-level ozone
- Particulate matter
- Carbon monoxide
- Lead
- Sulfur dioxide
- Nitrogen dioxide

Air Quality Index: Pollutants



https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics#formation

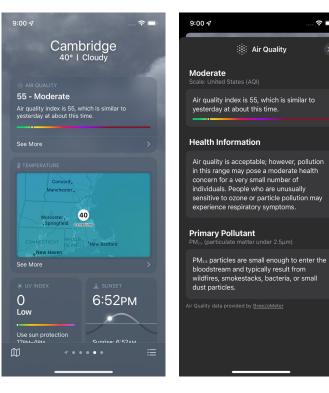
Air Quality Index: PM and NO2



https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM

https://phys.org/news/2018-03-german-deaths-nitrogen-dioxi de.html

World Health Organization Guidelines


	I.S. 2021 WHO air qua ntable PM2.5 deaths avoided if new AQG		
Pollutant	Averaging Time	2005 AQGs	2021 AQGs
PM2.5 µg/m ³	Annual	10	5
	24-hour	25	15
PM10 µg/m ³	Annual	20	15
	24-hour	50	45
Ozone	Peak Season*+	100	60
(O3) µg/m³	8-hour**		100
Nitrogen dioxide	Annual	40	10
(NO ₂) µg/m ³	24-hour*		25
Sulfur dioxide (SO ₂) µg/m ³	24-hour	20	40
Carbon monoxide (CO) mg/m ³	24-hour*	-	4

World Health Organization

Air Quality Index

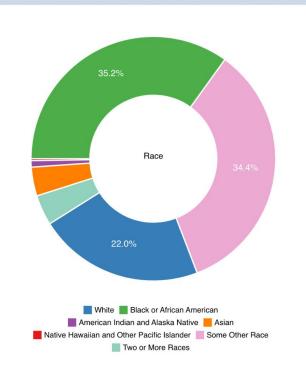
Air Quality Index						
AQI Category and Color	Index Value	Description of Air Quality				
Good Green	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.				
Moderate Yellow	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.				
Unhealthy for Sensitive Groups Orange	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.				
Unhealthy Red	151 to 200	Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects.				
Very Unhealthy Purple	201 to 300	Health alert: The risk of health effects is increased for everyone.				
Hazardous Maroon	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected.				

Air quality index (United States Environmental Protection Agency)

∻ □

Air quality index shown in iPhone weather app

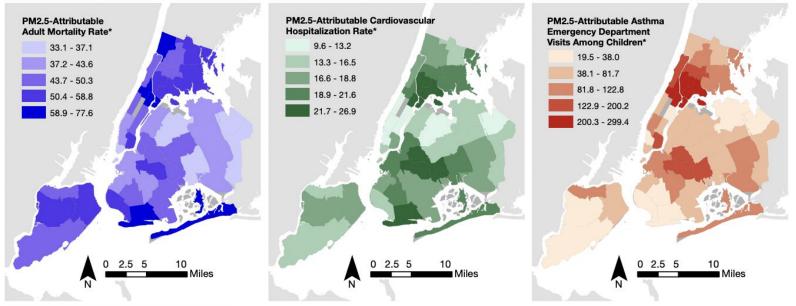
The Bronx



Historical + Environmental Context

The Bronx: Overview + Demographics

US Census 2019 ACS 5-Year Survey (Table B03002)



The Bronx: Context

The Bronx: Environmental Issues

Mortality and morbidity from selected conditions due to PM2.5 in New York City

* 2009-2011 Annual Average, Rate per 100,000 persons

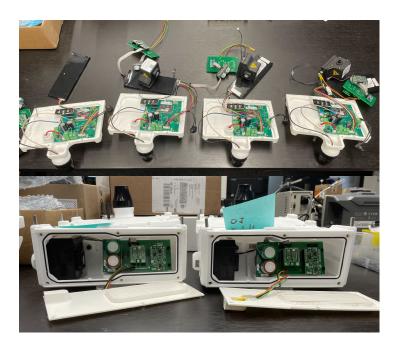
The Bronx: Environmental Issues

Resources

- <u>NYCCAS Data</u>
- South Bronx Environmental Health and Policy Study
- <u>NYC Environmental and Health Portal</u>
- <u>New York Disadvantaged Communities Criteria</u>
- <u>Climate and Economic Justice Screening Tool</u>
- <u>NYC Environmental Justice Alliance</u>
- <u>NYC Community Health Profiles</u>
- Potential Environmental Justice Areas in The Bronx

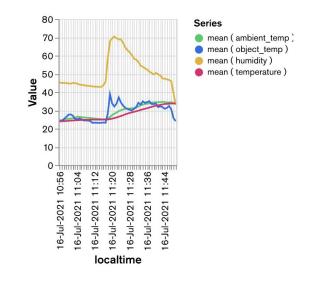
City Scanner

Data Collection Pipeline Tour


CITYSCANNER DATA COLLECTION PIPELINE TOUR

What does an environmental data collection pipeline look like in practice? City Scanner: Data pipeline from hardware assembly to dynamic maps

Part 1: Assembly



Part 2: Testing

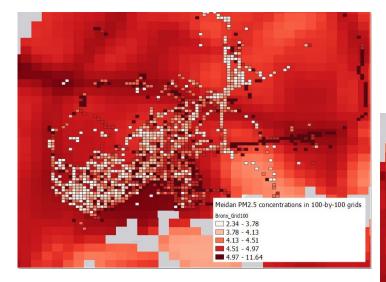
KTH 01 Temp + Humidity

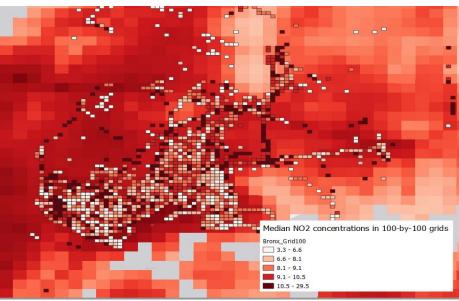
Part 3: Data Acquisition

Part 4: Data Validation

print("Total invalid timstamps for the collecti

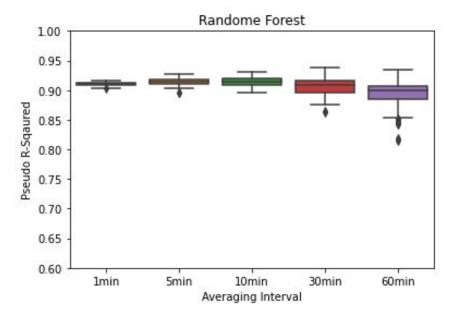
of invalid timestamps for KTH01: 0
of invalid timestamps for KTH02: 0
of invalid timestamps for KTH03: 1
of invalid timestamps for KTH04: 0
of invalid timestamps for KTH05: 74
Total invalid timstamps for the collection: 75

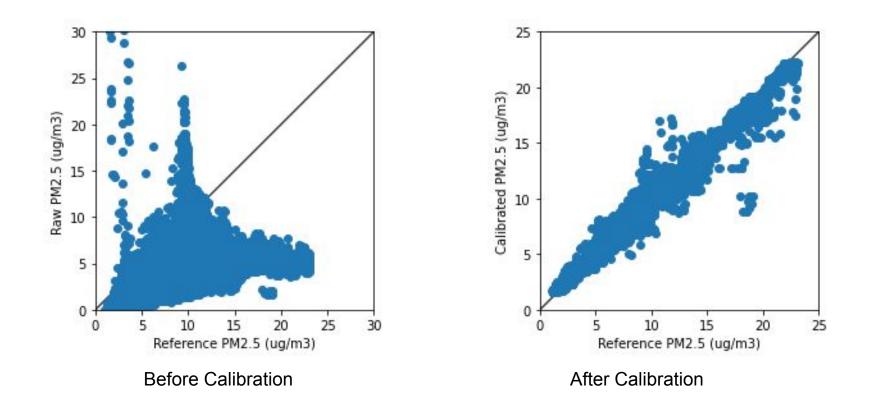

#find NAN/zero lat/lon values before filtering
##NOTE - this block must be run before data fil


```
zerolon1=(device1['longitude']==0).sum()
zerolat1=(device1['latitude']==0).sum()
print("Number of lat = 0 for KTH1:", zerolat1),
```

			•		•
localtime					
2021-07-26 00:00:00+00:00	27.894032	278.498540	285.698994	252.880636	420.083036
2021-07-27 00:00:00+00:00	29.039576	279.636421	286.367491	243.619637	396.145507
2021-07-28 00:00:00+00:00	24.004650	384.980391	388.208495	350.313130	528.279259
2021-07-29 00:00:00+00:00	23.968180	341.854801	346.847965	322.335673	425.801422
2021-07-30 00:00:00+00:00	21.251523	346.355689	352.861879	326.958869	473.290794
2021-07-31 00:00:00+00:00	21.646791	352.544802	352.500273	308.294471	776.294315

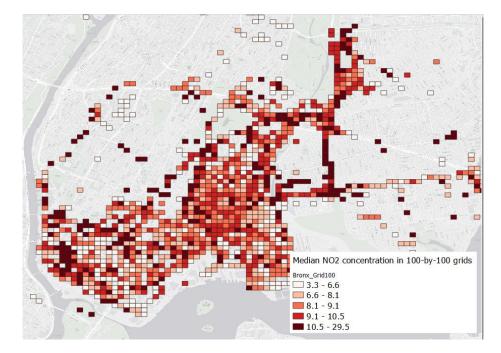
ambientIR gas_op1_r gas_op1_w gas_op2_r gas_op2_w


Part 5: Data Analysis



Analysis Method: Colocation + Calibration

Analysis Method: Colocation + Calibration


Validation Method: Background Correction

Background correction

- (Hourly) Multiplicative factor
- (Hourly) Lowest 10th percentile
- (Time series) Spline of minimums
- Background time-of-day correction
- Additive background correction factor

 $PM_{2.5,norm i} = PM_{2.5,OPC i} - PM_{2.5, bkg,i} + PM_{2.5, bkg,median}$

PM_{2.5,norm} i= PM_{2.5,OPC}, i x PM_{2.5}, bkg,median / PM_{2.5}, bkg,i

CityScanner 2021 Data

Bronx 2021 Deployment

A	-	_		_	F	G	н	1	1	K	L	М	N	0	2	9	R S			AA AB AC		AG AH AL		AM AN AQ	AP AQ AR	AS AT AU
		40.80738	-73.94307	0.26	0.27	m10 bir 0.27	0 bin1 6	bin2	bin3 0	8 E 0	bin4 b	oin5 0	bin6 0	bin7	bin8 0		A	В	С	D	E	F	G	н	I	J ,
35003/0006 1.5 35003/0006 1.5	8E+09	40.8074	-73.94307	0.35 0.32	0.36	0.36 0.33	9	1	0	0	0	0	0		0	1 0	deviceID	time	lat	long	pm1	pm25	pm10	bin0	bin1	bin2
35003/000F 1.5 35003/000F 1.5	i8E+09 4		-73.94306	0.5 0.42	0.93	0.95 0.5	8 63	0	2	1	0	0	0		0	2 3	35003f0006	5 1579575798	40.807384	-73.943069	0.26	0.27	0.27	6	1	0
35003/000F 1.1	i8E+09 3	3.001805	-73.94306	0.51 0.37	0.61 0.47	0.61 0.47	5	2	1	0	0	0	0		0	3 3	35003f0006	5 1579575800	40.807392	-73.943077	0.35	0.36	0.36	9	1	0
35003f000F 1.1 35003f000F 1.1	8E+09 4	40.80739	-73.9431	0.59	0.69	0.69	2	3	0	0	0	0	0		0	4 3	35003f0006	5 1579575802	40.8074	-73.943069	0.32	0.33	0.33	8	1	0
35003/0000 1.1 35003/0000 1.1 35003/0000 1.1	8E+09 4	40.80738	-73.94312	0.21 0.21 0.28	0.22 0.22 0.28	0.22 0.22 0.28	7	0	0	0	0	0	0		0 1	5 3	35003f0006	5 1579575804	40.8074	-73.943069	0.5	0.93	0.95	8	0	0
350036000 1. 350036000 1. 350036000 1.	85+09 4	40.80738	-73.94313	0.28 0.31 0.56	0.28 3.85 0.65	0.28 8.39 0.65	8	0	0	0	0	0	1					5 1579575815		-73.943062	0.42		0.5		17	-
35003f000F 1.1	i8E+09 4	40.80736	-73.9432	0.21	0.22	0.22	7 9	0	0	0	0	0	0		0 .	7 3	35003f0006	5 1579575806	40.807407	-73.943062	0.51	0.61	0.61	6	2	1
3500310001 1.1 3500310001 1.1	8E+09 4	40.80735	73.94325	0.56	0.99	1.01	3	3	0	1	0	0	0		0	8 3	35003f0006	5 1579575816	3.001805	-73.943062	0.37	0.47	0.47	5	0	-
35003/0000 1.1	i8E+09 4	40.80733	-73.94328	0.18	0.19	0.19	6	0	0	0	0	0	0		0			5 1579575822	40.807384		0.59				3	1
35003/000F 1.1				0.38	0.39	0.39	10 5	1 2	0	0	0	0	0		0			5 1579575820	40.807388	-73.9431	0.14				1	
35003f000F 1.1				0.54 0.24	0.63	0.64 0.24	7	2 0	1	0	0	0	0		0	-		5 1579575818		-73.943092	0.21		0.22		0	
35003/000/ 1.1 35003/000/ 1.1	8E+09 4	40.80733	-73.94328	0.43 0.31	0.45 0.32	0.45 0.32	7 8	3 1	0	0	0	0	0 0		0	-		5 1579575824		-73.943115	0.21		0.22	-	0	
	8E+09 4	40.80733	-73.94328 -73.94328	0.64 0.47	0.74 3.18	0.74 39.08	8	3 2	1	0	0 0	0	0 0		0			5 1579575828	40.807369		0.28		0.28		0	-
35003/0000 1.1 35003/0000 1.1	8E+09 4	40.80733	-73.94328	0.51 0.45	0.6	0.6	9	2	1	0	0	0	0		0 -			5 1579575826	40.807377	-73.94313	0.31				0	
35003/0000 1.1 35003/0000 1.1 35003/0000 1.1	8E+09 4	40.80733	-73.94329	0.21 0.4 0.44	0.21 0.4 1.58	0.21 0.4 1.74	13	0	0	0	0	0	0					5 1579575830		-73.943161	0.56		0.65		1	
350030000 11 350030000 11 350030000 11	8E+09 4	40.80733	-73.94329	0.44	0.16	0.16	5	0	0	0	0	0	0					5 1579575832		-73.943199	0.21		0.22		0	
35003f000t 1.1	8E+09 4	40.80733		0.49	0.51	0.51	11	2	0	0	0	0	0		0			5 1579575834	40.80735		0.42		0.44			
350031000H 1.1	8E+09 4	40.80733	-73.94329	0.7	0.87	0.87	9	1	2	0	0	0	0		0			5 1579575836		-73.943253	0.56				3	
35003f000F 1.	8E+09 4	40.80737	-73.94328	0.4	0.41	0.41	11	1	0	0	0	0	0		0	-		5 1579575838	40.807327		0.42		0.44		2	0
35003/0000 1.1 35003/0000 1.1				0.18 0.5	0.18	0.18 0.6	6	0 2	0	0	0	0	0		0			5 1579575842	40.807327		0.18	the second second	0.19		0	0
35003/000F 1.1			-73.94324 -73.94322	0.31 0.46	0.32	0.32 0.55	8	1 2	0	0	0	0	0		0			5 1579575840	40.807327		0.36		39.4		2	0
35003f000f 1.1	8E+09 4	40.80744	-73.94319	0.49 0.5	0.51 1.57	0.51 1.72	7 7	4 1	0	0	0 1	0	0 0		0			5 1579575844	40.807327		0.38				1	0
35003f000F 1.1	8E+09 4	40.80744	-73.9432	0.17 0.41	0.18	0.18 0.5	6	0 1	0	0	0	0	0					5 1579575846		-73.943283	0.54		1.83		2	
35003/000F 1.5	8E+09 4	40.80745	-73.94318	0.28 0.64	0.29 3.28	0.29 38.26	7 11	1 2	0	0	0	0	0		0			5 1579575848		-73.943283	0.54				2	1
35003/000F 1.5 35003/000F 1.5	i8E+09 4	40.80747	-73.94318	0.45 0.26	0.54	0.54	7	1	1	0	0	0	0		0			5 1579575850	40.807327		0.24				0	0
350036000 1.1 350036000 1.1	i8E+09 4	40.80748	-73.94321	0.59 0.22 0.45	0.69	0.69 0.23 0.55	4 5 7	4	0	0	0	0	0		0			5 1579575852	40.807327		0.24		0.24			1
35003/0000 1.1 35003/0000 1.1 35003/0000 1.1	8E+09 4	40.80748	-73.94323	0.45 0.29 0.3	0.55 0.38 3.74	0.55 0.38 8.15	4	0	1	0	0	0	0		0			5 1579575854		-73.943283	0.43				1	
350030000 11 350030000 11	8E+09 4	40.80747	73.94325	0.34	3.74 0.35 0.47	8.15 0.35 0.47	9	1	0	0	0	0	0		0			5 1579575856		-73.943283	0.51				3	
350030000 13 350030000 13 350030000 13	85+09 4	40.80745	-73.94329	0.45	0.47	0.47	8	1	0	0	0	0	0					5 1579575858		-73.943283	0.64				2	
35003f000t 1.1 35003f000t 1.1	i8E+09 4	40.80745	-73.94332	0.31	0.32	0.32	5	2	0	0	0	0	0					5 1579575858		-73.943283	(T. C. C. C.		1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4			
350031000H 1.1	8E+09 4	40.80746	-73.94333	0.62	0.8	0.8	6 10	1	2	0	0	0	0		0	0.00	5. A.				0.51				2	
35003/000F 1.1	8E+09 4	40.80745	73.94334	0.32	0.32	0.32	8 10	1	0	0	0	0	0		5 0	1 3	35003T0006	1579575862	40.80/32/	-73.943283	0.45	0.53	0.54		0	1
3500310001 1.1 3500310001 1.1	85+09 4	40.80745	-73.94336	0.27	0.27	0.27	9 10	0	0	0	0	0	0		0 0		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 3	81 18 15 81 18 15	0 207737 2077370 0 207737 2077370	1 2	0	DCP 11/29/07 00:00.0 DCP 11/29/07 00:00.0
35003f000f 1.1				0.39	0.47	0.47	7	0	1	0	0	0	0		0 0		0 0 0	0 0 0	0 0 0	0 0 0 0 0 0		78 18 15	0 207737 2077370 0 207737 2077370	1 2	0	DCP 11/29/07 00:00.0 DCP 11/29/07 00:00.0
350036000 1				0.73	0.91	0.91	5	3	2	ō	ő	ő	0		0 0		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 3	78 18 15	0 207737 2077370		0	DCP 11/29/07 00:00.0

Data Description -- Common

```
deviceID:"1f004a000d504e5354303
420"
```

time:1631239374

latitude:40.84767

longitude:-73.8693

deviceID:

• Unique identifier for each City Scanner Device

Time:

- Epoch time
- # of seconds that have elapsed since January 1 1970 (midnight UTC/GMT) not counting leap seconds

Latitude/Longitude:

• Unit: Degrees

Data Description -- raw data

bin0: 5945	PM1: 1.63
bin1: 418	PM25: 3.81
bin2: 101	PM10: 21.58
 bin23: 0	gas_op2_w: 654
D11123 .0	temperature:23.5
	humidity:71.9
	noise:32

24 Bins:

- Separate particle count by size
- Unit: # (count)

PM1:

- Particulate matter ~1 micron in diameter
- Units: ug/m3

PM2.5

- Particulate matter ~2.5 microns in diameter
- Units: ug/m3

PM10:

- Particulate matter ~10 microns in diameter
- Units: ug/m3

Gas_op2_w

- Electric signal for NO2
- Units: mv

temperature

- Ambient temperature
- Units: Degrees celsius

humidity

- Ambient humidity
- Units: % Relative humidity out of 100%

noise:

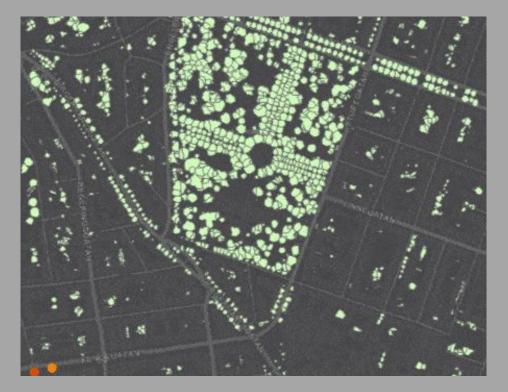
Units: Voltage level in mV

Data Description -- Calibrated NO2

tmpf: 20	tmpf:
chipt. 20	 Temperature at nearest weather station
	 Units: Degrees celsius
dwpf: 12.78	dwpf:
dwp1. 12.76	 Dewpoint at nearest weather station
	 Units: Degrees celsius
relh: 63.12	relh:
rein: 03.12	 Relative humidity at nearest weather station
	Units: %
dwate 210	drct:
drct: 310	 Wind direction with reference to the true north as 0
	 Units: Degrees
	sknt:
sknt: 7.20	 Wind speed at nearest weather station
	Units: m/s
malm. 101 1	mslp:
mslp: 101.1	 Air pressure at nearest weather station
	Units: kpa
	vsby:
vsby: 16.1	 Visibility at nearest weather station
	Units: km
feel: 20	feel:
ieei: 20	 Feel like temperature at nearest weather station
	Units: Degrees celsius
C_{1}	Calib_logNO2:
Calib_logNO2: 2.43	 Calibrated NO2 in log form
	Units: log ppb
Colib NO2, 11 22	Calib_NO2
Calib_NO2: 11.32	Calibrated NO2
	Units: ppb
Seline 10min. 11 22	Spline_10min
Spline_10min: 11.22	 Spline regressed NO2 using 10 min minimum values
	Units: ppb
Spline dworp, 4.75	Spline_dmean
Spline_dmean: 4.75	Daily median NO2
	Units: ppb
Rahadi NO2, 4 95	Bckadj_NO2
Bckadj_NO2: 4.85	 Background adjusted NO2 after calibration
	 Units: ppb

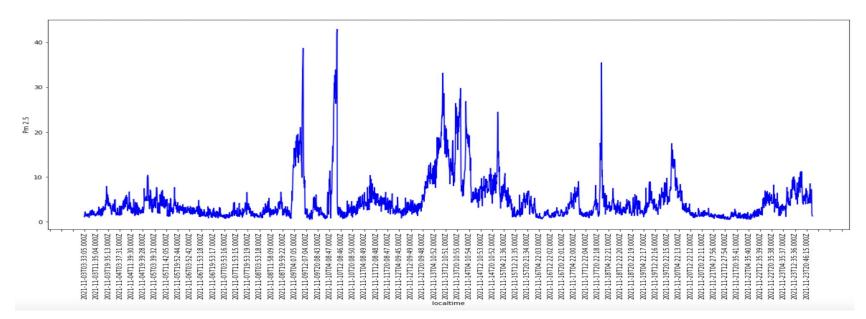
Data Description -- Calibrated PM2.5

tmpf: 20	tmpf:
	 Temperature at nearest weather station
	 Units: Degrees celsius
dwpf: 12.78	dwpf:
uwpi. 12.70	Dewpoint at nearest weather station
	 Units: Degrees celsius
relh: 63.12	relh:
	 Relative humidity at nearest weather station
	Units: %
duct. 210	drct:
drct: 310	 Wind direction with reference to the true north as 0
	 Units: Degrees
-l	sknt:
sknt: 7.20	 Wind speed at nearest weather station
	Units: m/s
	mslp:
slp: 101.1	 Air pressure at nearest weather station
	 Units: kpa
	vsby:
vsby: 16.1	 Visibility at nearest weather station
	Units: km
feel. 20	feel:
feel: 20	 Feel like temperature at nearest weather station
	Units: Degrees celsius
α 1 β 1 α	Calib_logPM:
Calib_logPM: 1.34	 Calibrated PM in log form
	Units: log ug/m3
Calib_PM:3.82	Calib_PM
	Calibrated PM
	 Units: ug/m3
Orline 10min. 4 27	Spline_10min
Spline_10min: 4.37	 Spline regressed PM using 10 min minimum values
	 Units: ug/m3
Spline_dmean: 4.02 Bckadj_PM: 3.47	Spline_dmean
	Daily median PM
	 Units: ug/m3
	Bckadj_PM
	 Background adjusted PM after calibration
	 Units: ug/m3


Activity: Methodology

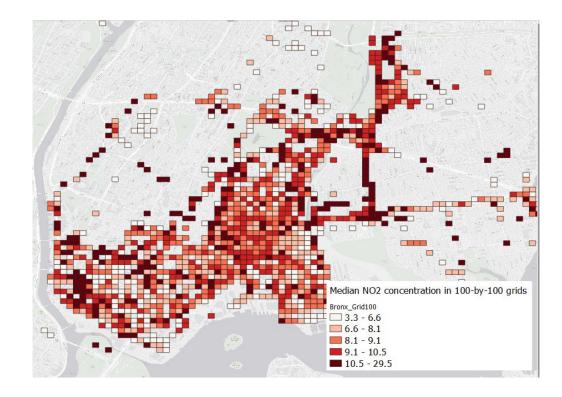
Understanding Spatial Environmental Patterns

_


DATA ANALYSIS METHODS

How do we understand the insights this data can provide? Overview of key CityScanner analysis practices

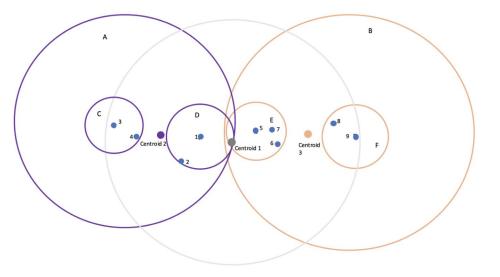
Analysis Method: Time Series


• Parameter as a function of time

Analysis Method: Mapping

- What can maps tell us?
- What info do you need to make a map?
- What tools can you use for mapping?

"A hot-spot analysis is defined in 40 CFR 93.101 as an estimation of likely future localized pollutant concentrations and a comparison of those concentrations to the relevant NAAQS." - United States EPA


Clustering

- DBSCAN (from scikit learn)
 - Density-Based Spatial Clustering of Applications with Noise
 - Finds core samples of high density and expands clusters from them
 - Good for data which contains clusters of similar density.

learn

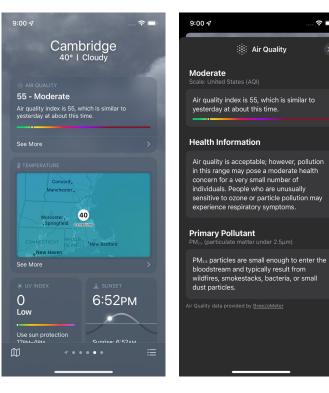
Clustering

- DBSCAN → Ball_tree algorithm
- Divides groups of points into clusters until desired size is reached

Hotspot Detection

- Bottom-up hierarchical clustering "agglomerative"
- Merge clusters of data into smaller clusters

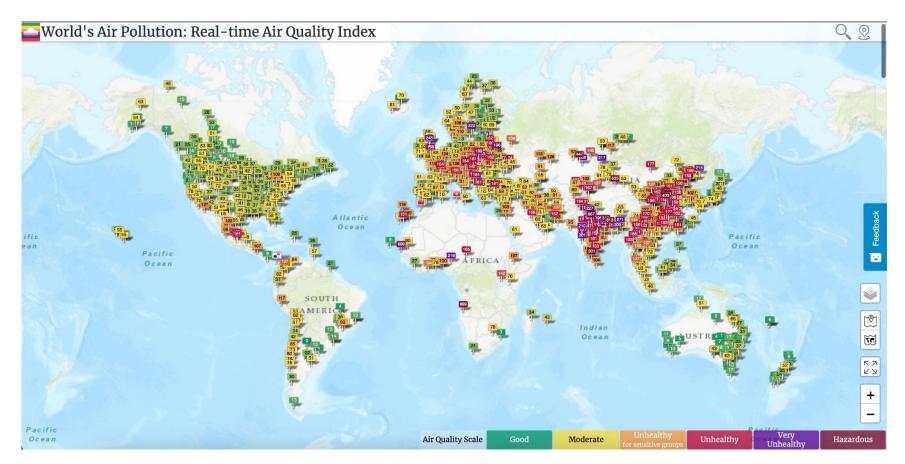
Air Quality API Exercise


World Air Quality Index API

_

Air Quality Index

Air Quality Index		
AQI Category and Color	Index Value	Description of Air Quality
Good Green	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.
Moderate Yellow	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.
Unhealthy for Sensitive Groups Orange	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.
Unhealthy Red	151 to 200	Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects.
Very Unhealthy Purple	201 to 300	Health alert: The risk of health effects is increased for everyone.
Hazardous Maroon	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected.


Air quality index (United States Environmental Protection Agency)

∻ □

Air quality index shown in iPhone weather app

Accessing (Global) EPA Data

Accessing (Global) EPA Data

WAQI

- Site Link: <u>https://waqi.info/</u>
- API Link: <u>https://aqicn.org/data-platform/token/</u>

Get API Token:

https://aqicn.org/data-platform/token/

Notebook Setup:

• Python libraries

Authentication

• Input custom token into notebook

Getting the Data

- Run sample code
- Modify + experiment!

Discussion

Understanding Spatial Environmental Patterns